,

Praktyczne uczenie maszynowe w języku R

Availability:

Na stanie


Uczenie maszynowe i analiza danych pełnią coraz ważniejszą rolę w tworzeniu wartości dodanej. Uczenie maszynowe pozwala znajdować ukryte w danych zależności, wnosząc nowe pomysły i wiedzę, którą trudno byłoby osiągnąć bez tej zaawansowanej techniki.

  • Autor: Fred Nwanganga, Mike Chapple
  • Wydawca: APN PROMISE
  • Rok wydania: 2022, oprawa: karton
  • Strony: 458, Format: 173×235 mm
  • Produkt na zamówienie. Wysyłka do 7 dni roboczych.

£19.99

Na stanie

Praktyczne uczenie maszynowe w języku R

Fred Nwanganga, Mike Chapple

Uczenie maszynowe i analiza danych pełnią coraz ważniejszą rolę w tworzeniu wartości dodanej. Uczenie maszynowe pozwala znajdować ukryte w danych zależności, wnosząc nowe pomysły i wiedzę, którą trudno byłoby osiągnąć bez tej zaawansowanej techniki. Książka Praktyczne uczenie maszynowe w języku R to wstępne przygotowanie do pracy z dużymi zbiorami danych w języku R, który jest łatwy w zrozumieniu i został opracowany specjalnie z myślą o analizie statystycznej. Nawet osoby bez doświadczenia w programowaniu mogą skorzystać z tej książki, dowiadując się, w jaki sposób praktyczne zastosowania uczenia maszynowego pozwalają analitykom danych pozyskiwać strate-giczne informacje biznesowe, solidne prognozy i podejmować trafniejsze decyzje. W odróżnieniu od innych książek na ten temat, Praktyczne uczenie maszynowe w języku R oferuje zarówno teoretyczne, jak i techniczne wprowadzenie do uczenia maszynowego. W przykładach i ćwiczeniach wykorzystywany jest język programowania R oraz najnowsze narzędzia analizy danych, co pozwala zacząć pracę bez nadmiernego zagłębiania się w zaawansowaną matematykę. Dzięki tej książce techniki uczenia maszynowego – po-cząwszy od regresji logistycznej po reguły asocjacyjne i analizę skupień – są w zasięgu ręki. Jedyna publikacja, która łączy intuicyjne wprowadzenie do uczenia maszynowego z opisami zastosowań technicznych krok po kroku. Praktyczne uczenie maszynowe w języku R pokaże jak: przyswoić koncepcje różnych typów uczenia maszynowego, odkrywać wzorce ukryte w dużych zbiorach danych, pisać i wykonywać skrypty R za pomocą RStudio, używać języka R w połączeniu z pakietami Tidyverse do zarządzania danymi i ich wizualizacji, stosować podstawowe techniki statystyczne, takie jak regresja logistyczna czy naiwny klasyfikator Bayesa, oceniać i ulepszać modele uczenia maszynowego. DR FRED NWANGANGA jest profesorem uczelni na wydziale Business Analytics w Mendoza College of Business na uniwersytecie Notre Dame, Indiana, USA. Ma ponad 15-letnie doświadczenie w pełnieniu roli lidera technicznego. DR MIKE CHAPPLE jest profesorem uczelni na wydziale Technology, Analytics, and Operations w Mendoza College of Business. Mike jest autorem ponad 25 poczytnych książek i pełni funkcję dyrektora naukowego programu studiów magisterskich z analizy biznesowej.